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Abstract

A path tracking criterion for the so-called LHD (Load-Haul-Dump) truck used in
underground mining is proposed in this paper. It exploits the particular configuration
of this vehicle, composed of two units connected by an actuated articulation. The
task is to follow the path represented by the middle of the tunnel maintaining the
whole vehicle at a reduced distance from the path itself, in order to decrease the
risk of crashes against the walls of the tunnel. This is accomplished via feedback
through the synthesis of an appropriate path tracking criterion. The criterion is
based on keeping track of the distances of the midpoints of both axles of the vehicle
from their orthogonal projections on the path, using two different moving frames
simultaneously. Local asymptotic stability to paths of constant curvature is achieved
by means of linear state feedback.

1 Introduction

In modern underground mining, the operation of transporting the ore from the stope
to the dumping point is performed by a truck called LHD (Load-Haul-Dump) navi-
gating through narrow tunnels. Compared to the usual work place for autonomous
robots out of laboratories, the underground gallery is a semi-structured environment:
the walls usually define in a clear way the limits of the free space and an accurate map
of the whole gallery is often available a priori, describing the path in terms of its cur-
vature. The simplified work environment, together with obvious safety reasons, mo-
tivates the numerous attempts to provide the mining truck of autonomous guidance
capabilities, see [Hurteau 92, Juneau 93, Makela 95, Saint-Amant 88, Scheding 97].
Although well structured, the tunnel is usually very narrow: in the narrowest parts
it can be only 10 % wider that the mining truck running into it. Therefore, it is
critical for the autonomous navigation of the vehicle to have a reliable control of the



lateral displacement with respect to the path, naturally represented by the center of
the tunnel, in order to avoid crashes against the walls of the tunnel.

For an underground tunnel, the radius of curvature is the only measure easily
attainable to describe the path and it is naturally given with respect to the length
covered along the path. Cartesian coordinates can be obtained by integration but
they are subject to drift errors and their usefulness is indeed doubtful since a gallery
can have a length of several kilometers.

The LHD is an articulated vehicle composed of two bodies connected by a kingpin
hitch. Each body has a single axle and the wheels are all non-steerable. The steering
action is performed on the joint, changing the angle between the front and rear
part by means of hydraulic actuators. Both the shape and the steering mechanism
are intended to improve the curve negotiation skills of the vehicle. In fact, it is
intuitively easy to understand that a vehicle without articulation, say a car-like
vehicle, would be more cumbersome i.e. would span a larger area than the LHD
when steering. How to explain and exploit this difference in mathematical algorithms
for the problem of tracking a given path has been the subject of several research
contributions [DeSanctis 97, Hemami 97, Polotski 97].

For a generic wheeled vehicle, the path following problem is a well studied prob-
lem, see [Canudas de Wit 97, Chapter 9] [Canudas de Wit 98]. It is essentially based
on the idea that it is possible to define at each time instant a notion of lateral dis-
tance of the vehicle from the path and that the lateral dynamic associated with that
distance can be studied independently from the longitudinal dynamic (expressing
how fast the path is covered). All the several approaches proposed in the literature
to solve the path following problem for wheeled vehicles are essentially based on a
common feature: a point on the vehicle (the guidepoint) is selected and a tracking
criterion is defined for this guidepoint. The task of the controller, then, is to have
the corresponding tracking error converging to zero. Different selections of the guide-
point can be made according to the characteristics of the system. Focusing on the
mining truck, if the sensor is a video camera [Hurteau 92] or a laser range finder
[Juneau 93], it is convenient to take the midpoint of the front axle, where the sensor
is normally mounted; alternatively the midpoint of the rear axle can be considered
[DeSanctis 97]. Other selections can be the center of mass or some geometric cen-
ter like the flat output of the system [Polotski 97]. In fact, the two-unit articulated
vehicle was proven to be flat in [Rouchon 93] but, unlike the standard n-trailer, the
flat output is not a physical point laying on the vehicle, therefore its usefulness for
motion planning and trajectory following purposes is less straightforward. Similarly,
the tracking error can be an euclidean distance between the guidepoint and the cor-
responding point on a virtual vehicle moving along the path according to some law
[Kanayama 90] or a combination of angular and position errors (in [Hemami 98] it
is based on tangent linearization of the error dynamics with the curvature of the
path assumed as disturbance) or, as we will use below, a distance between a point
and its orthogonal projection on the path [Samson 95]. Anyway, in all cases treated
in the literature, the criterion is based on a single point of the vehicle without care
of how much off-tracking the rest of the vehicle is accumulating with respect to the
path. In fact, one of the main problems for the navigation of the truck is that the



rear and front parts tends to follow different trajectories when the truck is bending.
Take for example the case of the guidepoint on the midpoint of the rear axle as in
[DeSanctis 97]: for a path composed of straight lines and arcs of circles, while passing
form line to arc, the steering action will start only when the guidepoint reaches the
nonzero curvature path but, by that time, the front part of the truck will be already
far off the path if the curvature is high enough. Moreover, also at steady state along
an arc of circle, the front point can have off-tracking if the two units of the vehicle
have different lengths [Bushnell 94]. Also the kingpin hitch contributes to increase
the difficulty of defining a suitable tracking law. In fact, choosing as guidepoint the
articulation joint (that can correspond to another geometric center of the vehicle) is
misleading because as soon as the steering angle is different from zero both units will
follow a trajectory narrower than the guidepoint. Similar considerations and similar
problems hold also for the other tracking errors mentioned above.

It has been shown by several authors [Sampei 91, Samson 95] that for a path
described in terms of curvature as function of the curvilinear abscissa it is convenient
to introduce a local frame, called the Frenet frame, moving along the path itself. The
main property of this frame is that it decouples the longitudinal motion along the
path from the lateral motion defined in terms of the distance of a prespecified point
(the guidepoint) from its orthogonal projection on the path. The Frenet frame gives
only a local representation i.e. it is well defined only in a “tube” around the path to
follow or in a tunnel, as in our case. Usually, regularity assumptions are needed for
the path in order to use the moving frame. However, the tunnel can also be build in
such a way to be described by means of only line segments and arcs of circle i.e. by
means of continuous path of discontinuous curvature.

Our problem can then be formulated as follow: we want to define an algorithm so
that an articulated vehicle can follow a C! path in a stable way and with a reduced
off-tracking i.e. with a reduced maneuvering space spanned by the vehicle around
the path.

The proposed solution consists in redefining the tracking error of the path fol-
lowing problem not based only on one single distance but on the sum of the signed
distances of the midpoints of both axles of the vehicle from their orthogonal projec-
tions on the path. A sum of distances is chosen instead of a quadratic function or of
an infinity norm because of its underlying linear structure. Choosing distances with
sign implies that the tracking error is not a norm; however a sign associated with
the tracking error is needed in order to decide the direction of the steering input.
Due to the presence of the nonholonomic constraints, the possible cancellations that
can occur when the distances are signed but the whole state is out of its equilib-
rium point (see [Hemami 98] for a description of the different cases) correspond to
transient “snapshots” of the dynamic evolution of the system out of its steady state
(which is achieved only asymptotically) i.e. to passages through zero of the tracking
error during the transient.

Stability can be proven locally for paths of constant curvature. Uniqueness of
the solution follows from the controllability of the system that was proven for an
articulated vehicle in [Laumond 93].

The emphasis on reducing the off-tracking has also a “dual” point of view: the



space spanned by the vehicle is a critical factor in the construction of the tunnel. In
fact it can be said that the tunnel width is determined by crash-safe considerations.
Therefore, improving the exact knowledge of the trajectories in the critical situations
like curves means being able to give more precise specs for the construction. Of
course, making a larger tunnel costs more, so an “optimal” trajectory can help in
reducing the width of the tunnel keeping the same safety constraints.

2 Kinematic model and Frenet frames

A typical configuration for a mining truck is the one shown in Fig. 1. Since the

Figure 1: Two-unit articulated vehicle.

operative speed for such a vehicle is low enough, we will neglect the dynamic effects
due to acceleration and braking as well as the slippage of the wheels and other effects
deviating from the exact kinematic model. So, for example, we allow the two wheels
of each axle to rotate independently and we implicitly assume that the steering action
on the joint is coordinate with a differential drive on the actuated wheels. This is
obviously “transparent” to our model if we make the assumption that the two wheels
of each axle can be lumped together in the midpoint of the axle.

At kinematic level, we have two nonholonomic constraints acting on the front
and rear axles, due to the assumption of rolling without slipping of the wheels. The
corresponding one-forms are:

Zgsinfy — gocoshy = 0

Z1sinfy —grcoshy = 0

where (2;, y;), 1 = 0, 1 are the cartesian coordinates and §; the orientation angles of
the midpoints Fy and P, of the axles of the vehicle.

From the geometry of the vehicle we can obtain a relation between the cartesian
coordinates:

rg =21+ Licosf; + Locos by
Yo = y1 + L1 sin 6y + Lgsin g

where Lg is the distance between Fy and the articulation point and L; the distance
between the articulation point and P;.



We can associate to both F; a velocity vector v; and express the motion of F; as:

{ Z; = v; cos b,

Ui = v; sin 6;

When only the kinematics of the vehicle is considered, the physical inputs of the
system can be considered to be one of the speed vectors, for example vy if the actuated
wheels are the rear wheels, and the rate of the angle between the two bodies of the
vehicle where the hydraulic actuator is placed, i.e. the steering speed w = ﬁ where
326, —8,.

A set of variables that describes the configuration space of the truck is given for
example by (21, y1, #1) with the kinematic equations:

1 = wvicost (1)
91 = " sin 01 (2)
. vysin 8 — Loﬁ
Hh = ————

! Lo+ Licosf (3)

The relation between the angle 6y and 6 is simply 6; = 6y + 3 and a dynamic
equation for 8y can be obtained consequently:

vy sin 3 + Lgcos ﬁﬁ

6, =
0 Lo+ Licosp

Alternatively, vg can be taken as input. From the geometry of the vehicle, the relation
between the two speed vectors is given by:

(Lo+ Lqcos ) vo+ LolLysin ﬁﬁ

Ul:vocosﬁ—l-LoSiﬂﬁéOZ Li+ Locosf
1 0

which explains the physical situation of vg and vy having opposite signs in case the
rate of change of the steering angle is high enough.

The system (1)-(3) was proven to be controllable in [Laumond 93] using tools
from differential geometry, like the rank of the Control Lie Algebra generated by the
vector fields associated with the inputs.

The typical work environment for such a system is an underground tunnel of
arbitrary length. A common and convenient representation for such an environment is
in terms of a curvature function associated with the length of a curve representing for
example the middle of the tunnel. Translating this into the cartesian coordinates of
an inertial frame is not possible analytically because of the absence, except for trivial
cases, of a closed form in the line integral expressing the length of the path covered.
Furthermore, since the tunnel can be arbitrarily long, the use of an inertial frame is
an awkward solution. To overcome these problems, different representations based on
local coordinates have been proposed like the use of error coordinates [Kanayama 90]
or the use of moving frames (see [Canudas de Wit 98] for a survey).

A particularly convenient local representation is given by a Frenet frame i.e.
a frame moving on the path to follow (see [Sampei 91, Micaelli 93]). The main



advantage of the Frenet frame is that it naturally decouples the lateral dynamics
(expressing the distance of the point of interest from the path) from the longitudinal
dynamics (i.e. the length covered along the path).

A point P in the plane is isomorphically described by a Frenet frame moving on
a given path v when the path itself is a sufficiently smooth continuous curve with a
lower bound r,, . in the radius of curvature and the point P is located at an absolute
distance |z| < r,,,,, from its orthogonal projection on the path (the origin of the
Frenet frame). With “sufficiently smooth” path we mean that the path must be a
simple curve € C''. The continuity of the curvature function is not required and so
also simple paths, composed of straight lines and arcs of circle, can be considered. In
our case we consider two Frenet frames moving on the curve to follow, corresponding
to the projections on « of the two points Fy and P; of our vehicle. In our frames,

Figure 2: Frenet frames associated with Fy and P;.

we assume to have chosen a base with the conventions of Fig. 2 where 7 and 7/ are
the unitary vectors respectively tangent and normal to the oriented curve . Each
of the curvilinear frames is represented by two coordinates (s,, 6,,) where s, is the
curvilinear abscissa i.e. the line integral along the path to follow, up to the actual
projection of the point P; on ~:

cos(;(1) — 6,,(7))dr

1

= Ko (85 (7)) 2:(7)

()= s, 4 [ 2

and 6., is the orientation of the frame with respect to the inertial frame. In the
Frenet frame, the point F; is represented by the signed distance z; between the point

itself and its projection and by the relative orientation angle 6, 2 0; —0,. The
three equations describing the dynamics of the point P; in the local frame are (see
[Canudas de Wit 97] or [Micaelli 93] or any book on classical mechanics):

v; cos(b; — 0.,)

o 1 — Ky(5y,)7i
Z = wu;sin(6; — 6,)
52, = § — vi cos(fi — 0., )ky(s4,)

1 — fiy(sy,)zi

i € {0, 1}. Each of the curvilinear frames is well defined essentially in a “tube”
around the path to be followed. The width of this tube, as mentioned above, is at



least r,, . in the worst case, when the curvature of the path reaches its permitted
maximum (max |ky| = 1/r, , ). Obviously, when the path is a straight line, the
width of the tube tends to infinity. In order to assure well posedness of our control
problem, we must have that |z < r,, . , ¢ € {0, 1}. Convergence to the path assures
that when the truck starts enough close to the path, then it remains inside the allowed
region.

For this system, the main issue of the autonomous navigation is by far to keep to
the middle of the tunnel, i.e. to keep control of the lateral dynamics. As seen above,
the Frenet frame provides a natural way to describe the lateral displacement of a
point from the path, since z; represents the signed distance of P; from its orthogonal
projection on 7. This property has been used by several authors as tracking criterion
for the path following problem. We will also use it, but redefining the tracking error
as the sum of the two signed distances corresponding to the two points Fy and Py.
In other words, we substitute the tracking criterion normally used z; — 0 (or an
equivalent one) with

2+21 =0 (4)

Using the Frenet frame, the control of the longitudinal dynamics, i.e. how fast
the path is covered, becomes an independent problem and relatively secondary with
respect to the lateral control. Therefore, it will be neglected in this study. This
is equivalent to drop one of the degrees of freedom of the control design that is
to say, in our case, to consider the input speed v; as a given (open-loop) function
or more simply a constant value. Furthermore, also the dynamic equations for the
length covered along the path can be neglected: in fact s, and s,, enter into the
model only when the curvature %, is varying. Since the stability analysis of our path
tracking algorithm will be carried out along an arc of circle, the model is completely
independent from s,, and s,,. In order to keep track of both the distances zy and
z1 simultaneously, we must increase the dimension of the state. Choosing as state

A g . . .
vector p = |zg 21 09 61 f| and rearranging the dynamic equations we get:

r L1+ Lo cos 3

[ ,2:’0 Lo+1Lycosf sin 00
% sin 64 ~
: i sinf_ (Li+Lo cos By (s4g) cosl
P = ;0 = Lo+Ljcosf3 (Lo+L1 cos ﬁ)(l—ﬁj(syo )Zo) (1
04 sin 3 _ #iy(syy ) costy
ﬂf Lo+1L1 cos3 1—ky (54, )21
L L 0 ]
i _ LoLy sin Bsin g ]
Lo+1L1 cosf3
0
Licosf3 LoL; Sinﬁﬁy(syo)coséo
w 5
+ Lo+Ljicosf (Lo+L cos ﬁ)(l—ﬁy(syo)zo) ( )
__Locosp
Lo+Licosf
1

or, in more compact form:

p = A(p) + B(p)w (6)



which emphasizes the presence of a drift term.

Clearly, considering both reference systems in Fy and in P, gives a redundant
description of the system. In order to complete this overparametrized state represen-
tation, one has to introduce three constraints expressing the fact that the vehicle is
a rigid body. These three constraints are given by line integrals that depend on the
geometry of the truck and on the curvature of the path between the two projections
of Py and P, on the path. They are obviously holonomic i.e. they reduce the con-
figuration space of the system down to the original number of variables (4 when the
input is the steering speed). They cannot be expressed in a purely algebraic form
since, except for the trivial cases, line integrals do not have a closed form expression.
If E is a generic point of the body [Fy, Pi] and dl is the increment along the body,
they can be written as:

B Lo+Ln cos B (1)dl
I A s 7 "
Lo+14 -
0 = 21+/ sin O (1)dl (8)
N . ’ Lo+14
R B R ) EGH (9)

Eq. (7) is a line integral independent from the speed of the vehicle, function only of
the position and orientation with respect to the path. In eq. (9), we have used the
relation dl = v;dt where v; assumes the meaning of the “velocity” with which the
point E moves along the body of the vehicle. In the simplified case of a path that
is a straight line corresponding, for example, to the z axis in cartesian coordinates
(sy = z), the rigid body constraints simplify to:

S5y = Sy, + Locosty+ Lycost
Z0 = 21 + LO sin 00 + Ll sin 01
bp = 6o =6+5=20,+p

The constraints correspond to the assumption of rigid body, so they continue to hold
also in the case of v1 = 0 i.e. no motion at all for the system.

3 Stability analysis

For a car-like vehicle, the path following with positive speed implies that the open
loop equilibrium point is “naturally” stable whereas backward motion implies that
the same equilibrium is open loop unstable (in fact, the former resembles a normal
pendulum and the latter an inverted pendulum, as degree of difficulty of the control
design). For a mining truck, the path following problem has always an unstable
equilibrium point due to the steering action performed on the articulation joint.
We use Lyapunov linearization method to show that the system can be locally
asymptotically stabilized to a path of constant curvature. Since the method is based
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on tangent linearization of the original dynamics of the system around the equilibrium
point, looking at eq. (5) it is easily seen that the system has a steady state only when
Kk~ is constant i.e. when the path is a straight line or an arc of circle. However, the
simulations of Section 4 show that, in practice, the controller assures stability also
with varying curvature. Moreover, the fact that linearization does not provide global
results is not a limitation in our case since the mining truck has to navigate into a
tunnel of reduced width and also the local frames are isomorphically defined only in
a region around the path.

Proposition 1 The system (6) can be locally asymptotically stabilized to a path of
constant curvature by means of a linear state feedback.

Proof

For a path of constant curvature «., the equilibrium point p. can be calculated
from the geometry of the problem. Both the relative orientation angles 6; must
be 0 since the points P; have to rotate around circumferences concentric with the
path. Moreover, we have to impose the condition zg 4 z; = 0 which will also identify
uniquely the value of 3 at the equilibrium. We have then:

r ey (I3-13) T
20, 4
1. _M
~ 4
Pe = 0~0e = 0
01, 0
Be | arctan (15?;”20) + arctan (%) |
The Jacobian matrix calculated around p. is:
_ 0A _
A= op P=Pe -
L1+ Lo cos Be
0 0 LotLicospe O 0
0 0 0 1 0
B (L1+Lo cos Be )2 0 0 Li+LgcosfBe (L?—Lg) sin Be ki
(Lo+L1 cos Be)(1—r~ 20, )? , (Lo41L cos Be)? (Lo411 cos Be)?(1—k~y20, )
0 S T 0 0 _LitLocosBe
(1—r~y20.)? (Lo+L1 cos Be)?
0 0 0 0 0

. . .. . - . A
is a Hurwitz matrix i.e. the closed loop state matrix A — v; KB with B = B(p.) can
be made stable by choosing an appropriate gain K.

&

It can be noticed that the stability of the closed loop system is independent from
the sign of the speed vector vy which means that the vehicle can track the path in
both directions of motion.

If a saturation is introduced on the steering angle 3, then from the expression for
the equilibrium point pe, it is possible to obtain a maximum value of the curvature
k~ that can be followed at steady state with zero tracking error.




4 Simulations

In Fig. 3, the path to track is an arc of circle. It can be seen that convergence is
achieved from a generic admissible initial condition. A similar behavior is obtained

—10b

-12

xxxxx

Figure 3: Following an arc of circle (k, = —0.2).

with a negative speed (Fig. 4). The low off-tracking induced by the criterion (4)

Figure 4:

can be appreciated in Fig. 5 for a path composed of line-arc-line segments. Finally,
Fig. 6 shows how it is possible to follow in a stable way also a path on nonconstant
curvature, here a clothoid (k. grows linearly).

5 Conclusion

How must a mining truck navigate into the narrow underground tunnels that consti-
tute its ordinary work environment avoiding crashes against the walls? The answer
to such a question is not so trivial since the standard path tracking methods do not
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Figure 5: Following a line-arc-line path at steady state: the induced off-tracking is kept
low.
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Figure 6: Following a clothoid.

take into account the off-tracking induced in some parts of the vehicle, nor they take
advantage of the particular configuration of this articulated truck which is studied
to have higher maneuverability than a standard wheeled vehicle.

Our proposed solution consists in considering a feedback law with tracking error
based on the sum of the distances of both the units from the path. The distances are
expressed using a couple of Frenet frames moving on the path. The moving frames
provide a very natural description for the underground gallery usually represented
in terms of a curvature function associated with the curvilinear abscissa giving the
length covered along the path.
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